Theoretical calculation of circular-crested Lamb wave field in single- and multi-layer isotropic plates using the normal mode expansion method

Lingfang Li¹, Mohammad Faisal Haider², Hanfei Mei², Victor Giurgiutiu² and Yong Xia¹

Abstract
The guided wave technique is commonly used in the health monitoring of thin-walled structures because the guided waves can propagate far in the structures without much energy loss. However, understanding of the wave propagation in bounded layered structures is still lacking. In this study, the Lamb wave field of single- and multi-layer plates excited by surface-mounted piezoelectric wafer active sensors is theoretically analyzed using the normal mode expansion method, which is based on the elastodynamic reciprocity relation and utilizes the orthogonality relations of the Lamb wave modes. The mode participation factors of Lamb wave in single- and multi-layer isotropic plates are derived. The time domain responses are obtained through the inverse Fourier transform of the structural response spectrum, which is obtained by multiplying the transfer function with the excitation frequency spectrum. The developed normal mode expansion method is first applied to an aluminum single-layer plate. The obtained analytical tuning curves and out-of-plane velocity of the plate are in good agreement with the numerical and experimental results. Finally, the analytical wave responses of an aluminum–adhesive–steel triple-layer plate are verified through comparison with the finite element analysis and experiment. The proposed normal mode expansion method provides a reliable and accurate calculation of the wave field in single- and multi-layer plates.

Keywords
Lamb wave, isotropic plates, piezoelectric wafer active sensor, normal mode expansion, elastodynamic reciprocity relation, tuning curve

Introduction
The guided wave technology,¹ which uses ultrasonic waves that can propagate far in the waveguide without much energy loss, is suitable for inspecting large areas of complicated structures and has gained wide attention from structural health monitoring (SHM) communities in recent decades. Guided waves are commonly excited by directly attached electromagnetic acoustic transducers²,³ and piezoelectric transducers.⁴ Piezoelectric wafer active sensors (PWASs) are commonly used to generate and receive guided waves in SHM applications due to the direct and converse piezoelectric effects.⁵ Contrary to conventional transducers, PWASs are of low cost, lightweight, and unobtrusive to the monitored structures. They can be permanently bonded to the host structures in large quantities and achieve real-time SHM. PWASs can be used in various modes, including pitch-catch, pulse echo, phased array, and electromechanical impedance modes.⁶ Possible structural damage such as delamination, debonding, dents, and cracks, which change the waveguide properties and introduce wave scatters, can be detected by examining the changes

¹Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
²Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Corresponding author:
Yong Xia, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong. Email: y.xia@polyu.edu.hk
in the wave amplitudes and packet shapes and the newly emerged wave packets.7,8

In plate-like structures, the commonly used guided wave types include the Lamb and shear horizontal waves. Such waves are dispersive and contain multiple modes. Several efficient techniques have been developed to study the wave properties in plates, such as the global stiffness method (GMM),9,10 transfer matrix method,11 elastodynamic finite integration technique,13 spectral finite element method,14 and semi-analytical finite element (SAFE)15,16 method. These methods provide the stationary guided wave dispersion and mode shape information in the frequency domain.

The guided wave responses induced by transient excitations contain broad frequency contents due to their dispersive nature. They are analyzed in the frequency domain first and then transferred back into the time domain. Several methods have been developed to calculate the plate frequency domain responses induced by various types of external excitations. For example, the wave fields induced by a point load (in normal or oblique directions) have been analytically and semi-analytically calculated by Green’s function.16,17 The line load–induced wave field of straight-crested wave can be obtained if the plane strain assumption is adopted. However, typically direct-bonded transmitters, such as circular or rectangular PWASs, have finite dimensions. Thus, the loads cannot be assumed as point or line loads. The Lamb wave field amplitude induced by surface-mounted PWASs is commonly referred to as the Lamb wave tuning curve, which depends on the PWAS and plate properties and is related to the structural transfer function. In fact, this curve is equivalent to the transfer function if the excitation amplitude is 1, that is, unit excitation is applied.

The integral transform method (ITM)18–20 has been used to obtain the tuning curves for straight- and circular-crested Lamb waves in single-layer isotropic plates. The ITM first transforms the wave governing equations for the straight-crested (or circular-crested) wave equations into the wavenumber domain through Fourier transform (or Hankel transform). The wavenumber domain solutions are then transferred back to the physical domain through the corresponding inverse transform. Complicated transform calculations are required among different domains in this method. Liu and Xi21 incorporated ITM with numerical approximation in the plate thickness direction and proposed a hybrid numerical method to extend the ITM application to composite plates. Barouni and Saravanos22 studied the surface-excited straight-crested waves in lamina and sandwiched plates with the ITM.

The normal mode expansion (NME) method utilizes the orthogonality relations of Lamb wave modes to avoid the complicated transform calculations among domains. Only the stress and velocity mode shapes are required to obtain the tuning curves. With this method, Achenbach and Xu23 predicted the wave field excited by a point source. Kamal et al.,24 Weaver and Pao,25 and Moulin et al.26 derived the tuning curves for straight-crested Lamb waves in plates. Santoni27 approximated the tuning curve for circular-crested waves (excited by circular PWAS) without considering the decrease in wave amplitude. Mei and Giurgiutiu28 also predicted the wave field in an anisotropic single-layer plate using the NME method in a semi-analytical manner.

Although the analytical solution for the straight-crested wave field is available, straight-crested waves are not common in practical SHM applications as they are actually a plane strain simplification of most real-life cases. Ideally, only line loads of infinite covering scope in the second in-plane dimension other than the wave propagation direction can generate straight-crested wave field, for example, a PWAS of a large aspect ratio with the short edge aligned with the wave propagation direction. PWASs of limited dimensions are more practical in real-life SHM applications, among which the circular-shaped sensors rather than the other shaped ones are more favorable due to simplicity of the generated wave field. Therefore, the study of the circular wave field is of more practical significance. Although previous works have obtained the circular-crested wave fields in single-layer plates analytically and in multi-layer plates semi-analytically, there are no analytical solutions of circular-crested Lamb wave field in bounded layered structures, such as multi-layer shell structures, dry cask storage canisters, and bonded plates, excited by finite dimension external excitations. In this study, the NME method is developed to solve the guided wave field in single- and multi-layer structures subjected to the circular PWAS excitations. Guided wave field solutions in the frequency and time domains in single- and multi-layer plates are verified numerically and experimentally. This article provides a basis for understanding the nature of the Lamb wave propagation in multi-layer plates.

PWAS basis

Piezoelectric materials couple the mechanical and electrical fields through the direct and converse piezoelectric effects as5

$$S_{ij} = s_{ijkl}^p T_{kl} + d_{ijk} E_k$$ \hspace{1cm} (1)

$$D_j = d_{ijk} T_{kl} + e_{ijk}^t E_k$$ \hspace{1cm} (2)
where S_{ij} is the mechanical strain, T_{kl} the mechanical stress, E_k the electrical field, D_j the electrical displacement, s_{ijkl} the mechanical compliance of the material at zero electrical field ($E = 0$), d_{ijkl} the piezoelectric coupling factor, and ε_{kl}^r is the dielectric permittivity at zero-mechanical stress field ($T = 0$). In a surface-mounted PWAS configuration, the d_{31} piezoelectric coupling effect is used, that is, the out-of-plane electrical field E_3 in the PWAS induces the in-plane strain, which will be transferred to the host structure through the adhesive layer\(^6,19\) shown in Figure 1. The shear stress distribution in the structure is shown in Figure 1(b). It concentrates more near the PWAS border when the bonding layer is thinner. In the ideal case, the thickness of the bonding layer is neglected, which is referred to as the pin-force model shown in Figure 1(c). The equivalent effective stress of the pin-force model is given by

$$\tau(r) = \delta(r - a) \frac{\delta(r - a) - \alpha}{\tau_a}$$

where δ is the Dirac delta function, $\psi = E_t/E_{a}t_a$ is the stiffness factor with E and E_a being Young’s moduli of the plate and PWAS, respectively, and τ and t_a being their thicknesses. $\varepsilon_{ISA} = -d_{31}V/t_a$ is the induced strain with d_{31} being the piezoelectric factor and V being the applied voltage, and the factor α depends on the stress, strain, and displacement distribution across the thickness. Under low-frequency dynamic conditions, α takes the value of 4.

Theoretical background of NME

The NME method is based on the elastodynamic reciprocity relation and takes the advantages of the orthogonality relation of Lamb wave modes. This method can be used to find the amplitude of certain modes generated by external loads and evaluate the contribution of each mode to the total wave.\(^29\) The NME method assumes that the actual wave field is the linear combination of wave modes with the corresponding participation factors as

$$U(r, \theta, t) = \sum_n a_n \Phi^n(r, \theta) e^{-\iota \omega t}$$

$$T(r, \theta, t) = \sum_n a_n \Omega^n(r, \theta) e^{-\iota \omega t}$$

where $U(r, \theta, t)$ is the actual displacement vector that consists of $U_r(r, \theta, t)$, $U_\theta(r, \theta, t)$, and $U_z(r, \theta, t)$ components, and $T(r, \theta, t)$ is the actual stress mode vector that consists of $T_r(r, \theta, t)$, $T_\theta(r, \theta, t)$, $T_z(r, \theta, t)$, $T_{\theta\theta}(r, \theta, t)$, $T_{\theta z}(r, \theta, t)$, and $T_{zz}(r, \theta, t)$ components. a_n is the participation factor of the nth mode. Correspondingly, $\Phi^n(r, \theta)$ is the nth displacement mode shape vector that consists of $\phi_r^n(r, \theta)$, $\phi_\theta^n(r, \theta)$, and $\phi_z^n(r, \theta)$, and components $\sigma^n(r, \theta)$ is the nth stress mode shape vector that consists of $\sigma_r^n(r, \theta)$, $\sigma_\theta^n(r, \theta)$, $\sigma_{\theta\theta}^n(r, \theta)$, $\sigma_{\theta z}^n(r, \theta)$, and $\sigma_{zz}^n(r, \theta)$. Notably, the bold italic letters indicate that the term is a vector, and the normal italic letters indicate a scalar term. The wave fields in single- and multi-layer isotropic plates are investigated in this study, and the waves are independent of the wave propagation direction θ. Equations (5) and (6) are then simplified as

$$U(r, t) = \sum_n a_n \Phi^n(r) e^{-\iota \omega t}$$

$$T(r, t) = \sum_n a_n \Omega^n(r) e^{-\iota \omega t}$$
To calculate the wave field, the mode shapes and the participation factor are obtained as detailed in the following sections.

Lamb wave mode shape in plates

Lamb waves in single-layer plates. The Lamb wave fields have been studied by many researchers.\(^6\),\(^1\),\(^3\),\(^0\) The governing equations for plate waves are

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{\partial^2 \Phi}{\partial z^2} - \frac{1}{c_p^2} \Phi = 0 \tag{9}
\]

\[
\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (rH)}{\partial r} \right) + \frac{\partial^2 H}{\partial z^2} - \frac{1}{c_s^2} H = 0 \tag{10}
\]

where \(\Phi \) and \(H \) are two potential functions; \(c_p = \sqrt{(\lambda + 2\mu)/\rho} \) and \(c_s = \sqrt{\mu/\rho} \) are the pressure and shear wave speeds with \(\lambda \) and \(\mu \) being the material Lame constants and \(\rho \) being the density, respectively. The nth wave mode shape components are

\[
u_n^p = -\left[\xi_n (A_1 \sin \eta_n + A_2 \cos \eta_n) + \eta_n (B_1 \cos \eta_n + B_2 \sin \eta_n) \right] H_1^{(1)}(\xi_n r)
\]

\[
u_n^s = \left[\eta_n (A_1 \cos \eta_n + A_2 \sin \eta_n) + \xi_n (B_1 \sin \eta_n + B_2 \cos \eta_n) \right] H_0^{(1)}(\xi_n r)
\]

\[
\alpha_n^{rr} = -\mu \left[(\xi_n^2 + \eta_n^2 - 2\eta_n^2) (A_1 \sin \eta_n + A_2 \cos \eta_n) + 2\eta_n \eta_n (B_1 \cos \eta_n + B_2 \sin \eta_n) \right] H_1^{(1)}(\xi_n r) - \frac{2\mu \nu_n^p}{r}
\]

\[
\alpha_n^{zz} = -\mu \left[(\xi_n^2 - \eta_n^2) (A_1 \sin \eta_n + A_2 \cos \eta_n) + 2\eta_n \xi_n (B_1 \cos \eta_n + B_2 \sin \eta_n) \right] H_1^{(1)}(\xi_n r) - \frac{2\mu \nu_n^s}{r}
\]

(11)

where \(\eta_n^2 = \omega^2/c_p^2 - \xi_n^2 \) and \(\xi_n^2 = \omega^2/c_s^2 - \xi_n^2 \) with \(\xi_n \) being the nth wavenumber. Parameters \(A_1 \), \(A_2 \), \(B_1 \), and \(B_2 \) can be determined from the boundary conditions, that is, the free surface traction condition. The first-kind Hankel functions of order 0, \(H_0^{(1)} \), and order 1, \(H_1^{(1)} \), are used to indicate the outward propagation of the Lamb waves. The time dependency term \(e^{-i\omega t} \) and other mode shape components not further used are not explicitly written hereafter, unless specified.

For simplicity in future expressions, the following notations are introduced, with the \(r \) and \(z \) components in equation (11) being replaced with the \(x \) and \(y \) components to avoid possible confusions in the following derivations

\[
u_n^p = i \xi_n (A_1 \sin \eta_n + A_2 \cos \eta_n) + \eta_n (B_1 \cos \eta_n + B_2 \sin \eta_n)
\]

\[
u_n^s = \eta_n (A_1 \cos \eta_n + A_2 \sin \eta_n) + \xi_n (B_1 \sin \eta_n + B_2 \cos \eta_n)
\]

\[
\alpha_n^{rr} = -\mu \left[(\xi_n^2 + \eta_n^2 - 2\eta_n^2) (A_1 \sin \eta_n + A_2 \cos \eta_n) + 2\eta_n \eta_n (B_1 \cos \eta_n + B_2 \sin \eta_n) \right] H_1^{(1)}(\xi_n r) - \frac{2\mu \nu_n^p}{r}
\]

\[
\alpha_n^{zz} = -\mu \left[(\xi_n^2 - \eta_n^2) (A_1 \sin \eta_n + A_2 \cos \eta_n) + 2\eta_n \xi_n (B_1 \cos \eta_n + B_2 \sin \eta_n) \right] H_1^{(1)}(\xi_n r) - \frac{2\mu \nu_n^s}{r}
\]

(12)

With these notations, equation (11) is simplified as

\[
u_n^p = i \xi_n^p H_1^{(1)}(\xi_n r)
\]

\[
u_n^s = i \xi_n^s H_0^{(1)}(\xi_n r)
\]

\[
\alpha_n^{rr} = \alpha_n^{zz} H_0^{(1)}(\xi_n r) + \frac{2\mu \nu_n^p}{r}
\]

(13)

\[
\alpha_n^{zz} = \alpha_n^{zz} H_1^{(1)}(\xi_n r)
\]

(14)

Lamb waves in multi-layer plates. For a multi-layer plate, the dispersion curves could be obtained with the GMM. Taking the double-layer plate in Figure 2 as an example, the boundary conditions include the free traction condition on the top and bottom surfaces and the traction and displacement continuity at the interface of the two layers

Top surface \(T_1(z = d_1 + d_2) = \{0\} \)

Interface \(T_1(z = d_1 + d_2) = T_2(z = d_2) \)

Bottom surface \(T_2(z = 0) = \{0\} \)

Figure 2. Schematic configuration of a double-layer plate.
Equation (15) can be rewritten in the matrix form. The obtained square matrix that incorporates the displacement and stress states of all layers is called the “global matrix.” Solving equation (15) will result in the frequency–wavenumber dispersion curve of this multi-layer plate and from which the stress and displacement mode shapes can also be obtained.

Reciprocity relation

Assuming that \(U_{12} \) is the displacement at point 1 due to force \(F_2 \) at point 2 and \(U_{21} \) is the displacement at point 2 due to force \(F_1 \) at point 1, then the reciprocity relation states that the work done by \(F_1 \) upon displacement \(U_{12} \) equals the work by \(F_2 \) upon \(U_{21} \).\(^{27}\) that is

\[
\frac{1}{r} \frac{\partial}{\partial r} \int_{-d}^{d} \left[r \left(\tilde{v}_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} + \tilde{v}_z \tilde{\sigma}_{rz} + v_z \tilde{\sigma}_{rz} \right) \right] \, dz + \left(\tilde{v}_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} + \tilde{v}_z \tilde{\sigma}_{rz} + v_z \tilde{\sigma}_{rz} \right) \Big|_{-d}^{d} = 0 \quad (19)
\]

The two forces generate velocity fields \(V_1 \) and \(V_2 \) and stress fields \(T_1 \) and \(T_2 \). Then, the complex reciprocity relation\(^{31}\) is

\[
\nabla \left(\tilde{V}_2 \cdot T_1 + V_1 \cdot \tilde{T}_2 \right) = - \left(\tilde{V}_2 \cdot F_1 + V_1 \cdot \tilde{F}_2 \right) \quad (17)
\]

where the overhead tilde “\(\sim \)” stands for the complex conjugate of the corresponding term. For the circular-crested waves in the cylindrical coordinate system, the complex reciprocity relation becomes

\[
\int_{-d}^{d} \left\{ \frac{\partial}{\partial r} \left[\left(\tilde{H}_1^{(1)}(\xi, r) \tilde{H}_0^{(1)}(\xi, r) \left(v_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} \right) + \tilde{H}_1^{(1)}(\xi, r) \tilde{H}_1^{(1)}(\xi, r) \left(\tilde{v}_r \tilde{\sigma}_{rr} + \tilde{v}_r \tilde{\sigma}_{rr} \right) \right] \right\} \, dy = 0 \quad (21)
\]

Through derivation, the following condition can be obtained

\[
\int_{-d}^{d} \left(\tilde{v}_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} \right) \left[r \tilde{r}_m H_1^{(1)}(\xi, r) H_1^{(1)}(\xi, r) - r \tilde{r}_m H_1^{(1)}(\xi, r) H_1^{(1)}(\xi, r) \right] \, dy = 0 \quad (22)
\]

\[
\frac{1}{r} \frac{\partial}{\partial r} \left[\tilde{v}_r T_1 + v_r \tilde{T}_1 + \tilde{v}_z T_2 + v_z \tilde{T}_2 \right] \Big|_{-d}^{d} + \frac{\partial}{\partial z} \left(\tilde{v}_r T_1 + v_r \tilde{T}_1 + \tilde{v}_z T_2 + v_z \tilde{T}_2 \right) \Big|_{-d}^{d} = 0 \quad (18)
\]

Orthogonality relation of Lamb wave modes

Taking an infinite single-layer plate of thickness \(2d \) as an example, assume the external forces \(F_1 \) and \(F_2 \) to be zero, then the two wave fields are two free wave modes. Without losing generality, the two wave fields are assumed as the \(m \)th and \(n \)th modes. By letting \(F_1 = F_2 = 0 \) in equation (18) and integrating it with respect to \(z \), the following condition can be obtained

\[
\int_{-d}^{d} \left[r \left(\tilde{v}_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} + \tilde{v}_z \tilde{\sigma}_{rz} + v_z \tilde{\sigma}_{rz} \right) \right] \, dz = 0 \quad (20)
\]

By substituting equations (13) and (14) into equation (20) and changing the integral variable from \(z \) to \(y \), the following condition can be obtained

\[
\int_{-d}^{d} \left(\tilde{v}_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} \right) \left[r \tilde{r}_m H_1^{(1)}(\xi, r) H_1^{(1)}(\xi, r) - r \tilde{r}_m H_1^{(1)}(\xi, r) H_1^{(1)}(\xi, r) \right] \, dy = 0
\]

Without considering material damping, that is, in the non-leaky plates, both the velocity and stress mode shapes of propagating wave modes are real. Therefore, \(\tilde{v}_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} = v_r \tilde{\sigma}_{rr} + v_r \tilde{\sigma}_{rr} \).

Equation (22) is thus simplified as
The orthogonality relation is written as
\[\int_{-d}^{d} \left((\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m) [r \xi_m H_1^{(1)}(\xi_m r) H_1^{(1)}(\xi_m r) - r \xi_m H_0^{(1)}(\xi_m r) H_0^{(1)}(\xi_m r)] \right) \, dy \\
+ \left(\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m \right) \left[r \xi_m H_0^{(1)}(\xi_m r) H_0^{(1)}(\xi_m r) - r \xi_m H_1^{(1)}(\xi_m r) H_1^{(1)}(\xi_m r) \right] \, dy \]
\[= r(\xi_m - \xi_n) \left[H_1^{(1)}(\xi_m r) H_1^{(1)}(\xi_m r) + H_0^{(1)}(\xi_m r) H_0^{(1)}(\xi_m r) \right] \int_{-d}^{d} \left((\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m) \right) \, dy \]
\[= 0 \]

If \(m = n \), the equation is automatically satisfied. If \(m \neq n \), then \(\int_{-d}^{d} (\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m) \, dy = 0 \) given that \(r(\xi_m - \xi_n) \left[H_1^{(1)}(\xi_m r) H_1^{(1)}(\xi_m r) + H_0^{(1)}(\xi_m r) H_0^{(1)}(\xi_m r) \right] \neq 0 \). The orthogonality relation is written as
\[P_{mn} = \int_{-d}^{d} \left(\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m \right) \, dy \]
\[\neq 0, \text{ if } m = n \]
\[= 0, \text{ if } m \neq n \] (24)

\(P_{mn} \) is also the normalization factor in the following derivation of the participation factor.

Participation factor calculation

Assuming that \(F_1 \) is the PWAS excitation with the angular frequency \(\omega \) and \(F_2 \) is zero, then equation (18) can be simplified as
\[\frac{1}{r} \frac{\partial}{\partial r} \left[\int_{-d}^{d} \left(\tilde{v}_m^x T_r^1 + \tilde{v}_m^y T_r^2 + \tilde{v}_m^x T_r^3 + \tilde{v}_m^y T_r^4 \right) \, dz \right] + \tilde{v}_m^x T_r^4 \bigg|_{-d}^{d} = 0 \] (25)

The wave field generated by \(F_1 \) can be assumed as an expansion of Lamb wave modes as
\[V_r^1 = \sum_m a_m(r) v_r^m(z) = i \sum_m a_m(r) v_r^m(y) H_1^{(1)}(\xi_m r) \]
\[V_r^2 = \sum_m a_m(r) v_r^m(z) = \sum_m a_m(r) v_r^m(y) H_0^{(1)}(\xi_m r) \]
\[T_r^1 = \sum_m a_m(r) \sigma_{xx}^m(y) H_1^{(1)}(\xi_m r) \]
\[+ \sum_m a_m(r) \frac{2\mu}{\omega r} \sigma_{yy}^m(y) H_1^{(1)}(\xi_m r) \]
\[T_r^2 = \sum_m a_m(r) \sigma_{yy}^m(y) H_0^{(1)}(\xi_m r) \]
\[T_r^3 = \sum_m a_m(r) \sigma_{xx}^m(z) = i \sum_m a_m(r) \sigma_{xx}^m(y) H_1^{(1)}(\xi_m r) \]
\[T_r^4 = \sum_m a_m(r) \sigma_{yy}^m(z) = i \sum_m a_m(r) \sigma_{yy}^m(y) H_0^{(1)}(\xi_m r) \] (26)

The wave field generated by \(F_2 = 0 \) is a free condition, that is, the \(n \)th Lamb wave mode that comprises the incoming and outgoing components. The second-kind Hankel functions \(H_0^{(2)} \) (order 0) and \(H_1^{(2)} \) (order 1) indicate the incoming component of Lamb waves with the time dependency term being \(e^{-\iota \omega t} \), as compared with the outgoing waves indicated by the first-kind Hankel functions \(H_0^{(1)} \) and \(H_1^{(1)} \). With the relation between Hankel and Bessel functions given by
\[H_0^{(1)}(\xi_m r) + H_0^{(2)}(\xi_m r) = 2 J_0(\xi_m r) \]
\[H_1^{(1)}(\xi_m r) + H_1^{(2)}(\xi_m r) = 2 J_1(\xi_m r) \] (27)

where \(J_0(\xi_m r) \) and \(J_1(\xi_m r) \) are, respectively, the Bessel functions of orders 0 and 1, the wave field can be expressed as
\[V_r^1 = \iota \nu_r^m(y) \left[H_1^{(1)}(\xi_m r) + H_1^{(2)}(\xi_m r) \right] = 2 \iota \nu_r^m(y) J_1(\xi_m r) \]
\[V_r^2 = \nu_r^m(y) \left[H_0^{(1)}(\xi_m r) + H_0^{(2)}(\xi_m r) \right] = 2 \nu_r^m(y) J_0(\xi_m r) \]
\[T_r^1 = \sigma_{xx}^m(y) \left[H_1^{(1)}(\xi_m r) + H_1^{(2)}(\xi_m r) \right] \]
\[+ \frac{2\mu}{\omega r} \nu_r^m(y) \left[H_0^{(1)}(\xi_m r) + H_0^{(2)}(\xi_m r) \right] \]
\[= 2 \sigma_{xx}^m(y) J_0(\xi_m r) + \frac{2\mu}{\omega r} \nu_r^m(y) J_1(\xi_m r) \]
\[T_r^2 = \sigma_{yy}^m(y) \left[H_0^{(1)}(\xi_m r) + H_0^{(2)}(\xi_m r) \right] = 2 \sigma_{yy}^m(y) J_0(\xi_m r) \]
\[T_r^3 = \iota \sigma_{xx}^m(y) \left[H_1^{(1)}(\xi_m r) + H_1^{(2)}(\xi_m r) \right] = 2 \iota \sigma_{xx}^m(y) J_1(\xi_m r) \] (28)

Notably, superscripts “1” and “2” on the left-hand side of equations (26) and (28) represent the responses to the forces \(F_1 \) and \(F_2 \), respectively. By substituting equations (26) and (28) into equation (25), the following condition can be obtained
\[\frac{1}{r} \frac{\partial}{\partial r} \left\{ \int_{-d}^{d} \left(\sum_m a_m(r) \right) \left[-J_1(\xi_m r) H_1^{(1)}(\xi_m r) \left(\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m \right) \right] \right\} \]
\[+ J_0(\xi_m r) H_0^{(1)}(\xi_m r) \left(\tilde{v}_m^x \sigma_{xx}^m + \tilde{v}_m^y \sigma_{xy}^m \right) \right\} dy \right\} = \tilde{v}_m^x J_1(\xi_m r) T_r^4(d) \] (29)

By recalling the orthogonality relation in equation (24), equation (29) becomes
\[P_{mn} \frac{\partial}{\partial r} \left\{ r a_n(r) \left[J_0(\xi_m r) H_1^{(1)}(\xi_m r) - J_1(\xi_m r) H_0^{(1)}(\xi_m r) \right] \right\} \]
\[= \tilde{v}_m^x J_1(\xi_m r) T_r^4(d) \] (30)
The differentiation property of Hankel and Bessel functions provides
\[
\frac{\partial}{\partial r} \left[r \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right] \right] = 0 \tag{31}
\]
Therefore, equation (30) is further simplified as
\[
P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right] \frac{\partial}{\partial r} a_n(\xi r, r) = v_n^a J_1(\xi r) T_{12}(d) \tag{32}
\]
By substituting the PWAS excitation given in equations (3) and (4) into equation (32) and performing integration, the final expression of the participation factor is
\[
a_n(\xi r, r) = \frac{v_n^a J_1(\xi r) \alpha \tau_a}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} \tag{33}
\]
Equation (33) indicates that \(a_n\) is a function of the wavenumber and is independent of the distance from the sensor. Therefore, the in-plane displacement and strain of the \(n\)th wave packet are
\[
U_{r}^n(r) = i \frac{v_n^a J_1(\xi r) \alpha \tau_a}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} J_{1}(\xi x) \tag{34}
\]
\[
u_r^n H_1^{(1)}(\xi x)
\]
\[
\nu_r^n = \frac{i}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} \frac{J_{1}(\xi x)}{r} \tag{35}
\]
The corresponding out-of-plane velocity of the \(n\)th wave packet is
\[
V_z^n(r) = -i \omega U_z^n(r) = \frac{-i \omega v_n^a J_1(\xi r) \alpha \tau_a}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} \nu_z^n H_0^{(1)}(\xi r) \tag{36}
\]
Equations (34) through (36) actually indicate that the Hankel functions account for the decrease in amplitude induced by the geometric spreading and are the tuning curves of the corresponding responses. In the derivations in this section, the mode shapes and the normalization factor impose no limitations on the plate thickness variation and the direction dependency is not considered. Therefore, the multi-layer plate is isotropic within each layer. The present derivation is applicable to multi-layer isotropic plates.

It should also be noted that, according to the differentiation property of Hankel functions given in equation (31), the response to any kind of external excitations, in addition to PWAS excitation, can be obtained as
\[
\frac{1}{r} \frac{d}{dr} \left[r \left(\frac{v_n^a J_1(\xi r) \alpha \tau_a}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} \right) \right] \tag{37}
\]
The left-hand side of equation (37) is the same as that of equation (32). Therefore, the complete expression of the participation factor is
\[
a_n(\xi r, r) = \left\{ \begin{array}{ll}
\frac{1}{r} \int_{-d}^{d} \left(\frac{v_n^a J_1(\xi r) \alpha \tau_a}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} \right) \left[\frac{r}{d} \left(-2i v_n^a J_1(\xi r) F_1^1 + 2 v_n^a J_0(\xi r) F_0^1 \right) \right] dz \\
- \left[V_z^n \sigma_{zz}^0 J_0(\xi r) + v_n^a J_0(\xi r) T_{12}^1 - i V_z^n \sigma_{zz}^0 J_1(\xi r) - i v_n^a J_1(\xi r) T_{12}^1 \right] \right\} \tag{38}
\]
The out-of-plane displacement of the \(n\)th wave packet is
\[
U_z^n(r) = \frac{v_n^a J_1(\xi r) \alpha \tau_a}{P_{nn} \left[J_0(\xi r) H_1^{(1)}(\xi r) - J_1(\xi r) H_0^{(1)}(\xi r) \right]} \nu_z^n H_0^{(1)}(\xi r) \tag{35}
\]
plate waves are required. For multi-layer plates, such equations are unavailable and the ITM is thus inapplicable. On the contrary, as shown in equation (38), not only various external excitations can be considered, but body forces F_r and F_z, excitation-induced stresses T_{zz} and T_{rz}, and the material variation in the thickness direction can also be accounted for in the corresponding mode shapes. Therefore, the NME method applies to multi-layer plates as well.

Wave field calculation

The modal participation factor calculated above is a function of the excitation frequency applied on the PWAS. Therefore, this factor is related to the transfer function of the PWAS–plate system. In practice, a short-period excitation, such as tone bursts, contains broad frequency components. The response frequency spectrum is obtained by multiplying the frequency spectrum of the excitation by the transfer function of the corresponding response. The time domain responses are calculated by the inverse Fourier transform. The flowchart of the entire process is shown in Figure 3.

Wave field in single-layer isotropic plates

The proposed NME method is applied to single-layer isotropic plates to calculate the tuning curves and the wave field in this section.

Tuning curves of single-layer plates

An infinite T2024-3 aluminum plate of 2.032 mm thickness is studied here. The material properties are given in Table 1. A circular PWAS of 7 mm diameter and 0.5 mm thickness is attached on the surface of the plate. The perfect bonding between the PWAS and the plate is assumed. Thus, the pin-force model described in section “PWAS basis” is used. The excitation voltage is 10 V peak to peak, and the piezoelectric coefficient is $d_{31} = -190 \times 10^{-12}$ m/V.

The tuning curves of the in-plane displacement U_r and strain ε_r of the plate are obtained using the proposed NME method. The first antisymmetric (A0) mode and symmetric (S0) mode tuning curves obtained at 50 mm away from the PWAS center, which are compared with their counterparts obtained with the ITM, are shown in Figure 4. The two curves obtained with the two methods are nearly the same, which verifies the accuracy of the proposed NME method. The A0 and S0 modes show different fluctuation patterns. Both modes increase rapidly first with the increase in frequency, with A0 mode peaking at 65 kHz and S0 peaking at 309 kHz, at which A0 mode nearly disappears. In fact, the tuning curve for A0 mode is nearly zero at 379 kHz, and this condition indicates that A0 is “rejected” at this excitation frequency. By taking the advantages of the distribution of nodes of A0 and S0 modes, proper excitation frequencies can be chosen to tune the desired wave modes in practice for the given PWAS. Equation (34) shows that the term $J_1(\eta_n a)$ determines the nodes in the tuning curves. Therefore, the tuning curves can also be used to determine the dimension of the PWAS for obtaining the optimal response at the desired excitation frequencies.

Wave field calculation

The wave field in the aluminum plate with the surface-mounted PWAS is calculated using the NME method. A three-count Hanning-windowed tone burst excitation of a 90 kHz center frequency and a 10 V peak-to-peak amplitude is applied on the PWAS. The excitation wave form and the corresponding frequency spectrum are shown in Figure 5. The A0 and S0 mode tuning curves of the out-of-plane velocity at 50 mm away from the PWAS center are obtained and plotted in Figure 6. The time domain signal is calculated through the inverse Fourier transform of the product of the transfer function and the excitation frequency spectrum.
The wave fields of the plate are also calculated using the commercial finite element analysis (FEA) software Abaqus.32 As the FEA cannot simulate an infinite physical region, an aluminum plate of $140 \, \text{mm} \times 140 \, \text{mm} \times 2.032 \, \text{mm}$ is studied. A total of 30 sets of damper elements are applied to the peripheral region of the plate, covering 30 mm from the borders, to eliminate the reflections on the plate boundary and simulate the “infinite” plate (Figure 7). The damper elements are set in the normal direction and two shear directions with linearly increasing damping ratios33 to absorb the normal and shear stress waves, as shown in Figure 7(b). The plate material and PWAS are the same as those in the theoretical calculation. The bottom surface of the PWAS is coupled to the plate with the “Tie” constraint type, such that all six degrees of freedom of the nodes in the interface are identical. The C3D8E coupled field elements are chosen for the PWAS and

Figure 4. Tuning curve of in-plane displacement U_r (a) and tuning curve of in-plane strain ε_r (b) of the aluminum plate.

Figure 5. (a) Excitation wave form and (b) frequency spectrum.

Figure 6. Tuning curve of out-of-plane velocity.
C3D8R elements for the plate. The maximum mesh size of the PWAS is 0.5 mm and the plate is discretized as \(1 \text{ mm} \times 1 \text{ mm} \times 0.508 \text{ mm}\) to meet the convergence and accuracy requirements. The element size is smaller than \(1/20\)th of the wave length, which is approximately 44 mm at the frequency of 180 kHz (double the center frequency).

The dashpot coefficients are determined by

\[
c_N = \frac{a}{4}(S_1 + S_2 + S_3 + S_4)\rho c_p
\]

\[
c_T = \frac{b}{4}(S_1 + S_2 + S_3 + S_4)\rho c_s
\]

where \(S_1\) to \(S_4\) are the areas of the four elements around the joint where the dashpot is applied, and \(a\) and \(b\) are the viscous coefficients for the normal and shear stresses, respectively.\(^{34}\)

The same voltage excitation shown in Figure 5 is applied on the top surface of the PWAS, and the bottom surface of the PWAS is grounded. After the implicit dynamic analysis, the out-of-plane velocities are extracted. The wave fields of the plate at 10 and 40 m/s are displayed in Figure 8. It can be seen from Figure 8(b) that the boundary reflections are effectively absorbed by the dashpots and that only small reflections are retained.

The sensing point is located 50 mm away from the PWAS transmitter center. The normalized velocity at this point obtained using the proposed NME method is compared with the FEA result in Figure 9. At this point, the S0 and A0 wave packets intersect with each other and form one large wave packet. In particular, the S0 wave packet fluctuates at a small amplitude, whereas the A0 wave packet fluctuates at a large amplitude. This result is expected from the tuning curves in Figure 6, in which the A0 mode amplitude is around 100 times the S0 mode amplitude at 90 kHz. The two sets of results match well for the direct incident waves except that the FEA results have some reflections from the plate boundaries after 60 \(\mu\)s. Therefore, the proposed NME method can calculate the wave field in a single-layer plate accurately.

Experimental validation

An experimental study is carried out to further validate the theoretical calculation. The experimental setup is illustrated in Figure 10. The aluminum plate is 2.032 mm thick and has plan dimensions of 700 mm \(\times\) 700 mm. The plate material properties are the same as listed in Table 1. The surface-bonded PWAS
(STEMINC SM412) is 7 mm in diameter and 0.5 mm in thickness. Near the border of the aluminum plate, a layer of clay (NSP non-drying modeling clay) as shown in Figure 10(b) and (c) is attached on both surfaces of the plate to absorb the stress waves and eliminate the reflections from the plate borders, as an approximation of the “infinite” plate configuration. The clay strips are around 50 mm wide. The excitation wave shown in Figure 5(a) was generated by the Tektronix AFG3052C dual-channel function generator, then amplified to 140 V peak to peak by the NF HAS4014 high-speed bipolar amplifier, and applied on the PWAS. The out-of-plane velocities at the two sensing points located 50 mm (sensing point 1) and 100 mm (sensing point 2) away from the PWAS center were measured using a Polytec PSV-400 scanning laser Doppler vibrometer (LDV) at a sampling frequency of 50 MHz.

The normalized out-of-plane velocity obtained in the experiment and the NME calculations are compared as shown in Figure 11. The normalization factors of the experimental and the NME calculation results are their corresponding maximum absolute velocities at sensing point 1. In each of the four lines in the figure, one wave packet merged by the S0 and A0 wave packets is observed. The wave packet amplitude at sensing point 2 is around 70% of that at sensing point 1, which is due to the geometric spreading and revealed by the geometric spreading and revealed by the
Hankel function term $H_0^{(1)}(\xi_{nr})$ in equation (36). Meanwhile, the wave packet of sensing point 2 has a longer duration than that of sensing point 1, which is a reflection of the dispersive nature of the Lamb waves. The wave propagation time and packet shapes obtained using the NME method are in excellent agreement with the corresponding experimental results, except that the boundary reflections appear at around 140 μs in the experimental results, whereas the NME prediction considers only the direct incident waves.

Wave field in multi-layer isotropic plates

As discussed above, the assumption adopted in the NME derivations imposes limitations on the direction dependency but no limitation on material variations in the thickness direction. Therefore, this method is also applicable to multi-layer plates made of isotropic materials. In fact, the single-layer plate model can be treated as a multi-layer plate made of identical materials in each layer. In the case, the tuning curves and time history results obtained using the multi-layer model are exactly the same as those obtained with the single-layer model. The results are not presented here for the sake of conciseness. For the multi-layer application, a triple-layer plate made of different materials is studied in this section.

Tuning curves at the sensing point in a double-layer plate

The triple-layer plate is made of a T2024-3 aluminum layer (1 mm thickness) and a 304 stainless steel layer (1 mm thickness), with a 0.2-mm-thick adhesive film sandwiched in between. The adhesive layer is assumed to guarantee the perfect bonding at both interfaces. The material properties are also listed in Table 1. The same PWAS configurations are adopted with the same excitation applied on it. The wavenumber and group velocity dispersion curves are first calculated using GMM, and the corresponding stress and velocity mode shapes are shown in Figure 12(a) and (b). The velocity and stress mode shapes in the multi-layer plate lost the symmetry or anti-symmetry nature present in the single-layer aluminum plate. The interface traction and displacement continuity imposed by equation (15) is guaranteed and the traction-free surface boundary conditions ($Tr_z = Tzz = 0$) are valid in the figures. At the same time, the continuity of T_{rr} at the interface does not exist because this component is internally balanced and does not interact with the adjacent layer. Based on

Figure 11. Out-of-plane velocities.

Figure 12. Normalized velocity and stress mode shapes of the first mode (a) and the second mode (b) of the aluminum–adhesive–steel plate.
these mode shapes, the out-of-plane velocity tuning curves of the triple-layer plates at 0.05 m away from the PWAS center are presented in Figure 13. In Figure 13, the first mode has a much lower amplitude at frequencies lower than 500 kHz, which means, at excitation in such frequency range, the first wave packet time history should have a smaller amplitude as well, as will be shown in the next section.

Wave field in the multi-layer plate

The wave field of the plate is calculated by performing the inverse Fourier transform of the product of the transfer function and the excitation frequency spectrum. The results are then compared with the FEA counterparts.

The FEA model of the aluminum–adhesive–steel triple-layer plate is built in a similar way as that in section “Wave field calculation” under “Wave field in single-layer isotropic plates,” with the material properties listed in Table 1. The normalized out-of-plane velocities obtained using the NME method and the FEA are plotted in Figure 14. In Figure 14(a), the separated wave packets of the first two modes at 50 mm away from the PWAS center are presented. As stated earlier, the amplitude of the first mode is much lower than that of the second one. Due to the short traveling distance, the two wave packets merged into one which is directly obtained in the FEA results as shown in Figure 14(b). The normalized out-of-plane velocities at 50 and 100 mm away match well with the analytical results obtained with NME in terms of both the wave traveling time and wave packet shape.

Experimental validation

An experimental study with a similar aluminum–adhesive–steel plate is carried out to validate the theoretical calculation. The overall experimental setup is similar to that shown in Figure 10, while the aluminum–adhesive–steel triple-layer plate is shown in Figure 15. The plate material properties are the same as listed in Table 1. The PWAS attachment and voltage excitation are the same as those in the previous experiment in section “Experimental validation” under “Wave field in single-layer isotropic plates.” The out-of-plane velocities at 50 and 100 mm away were measured. The normalized results are shown in Figure 16. An excellent agreement

![Figure 13. Tuning curves of out-of-plane velocity in the aluminum–adhesive–steel plate.](image1)

![Figure 14. (a) Separated wave packets of the first two wave modes obtained with NME and (b) normalized out-of-plane velocity in the aluminum–adhesive–steel triple-layer plate.](image2)
between the NME calculation and the experiment is obtained in terms of traveling time and wave packet shapes, indicating that the proposed NME method is applicable to the Lamb wave field calculation in multi-layer isotropic plates as well as in single-layer isotropic plates.

Conclusion and discussion

In this study, the NME method is developed to calculate the wave field in single- and multi-layer isotropic plates generated by a surface-mounted PWAS excitation. The orthogonality nature of the Lamb wave modes enables the calculation of the participation factor of each Lamb wave mode and consequently the desired tuning curves are obtained with the NME method. The tuning curves of a single-layer plate obtained from the proposed NME method are consistent with the ITM results. The time domain responses are in excellent agreement with the FEA and experiments, in which damper elements and clay are, respectively, used to absorb the boundary reflections. The NME method is applied to an aluminum–adhesive–steel triple-layer plate and the analytical out-of-plane velocities are similar to those of FEA and experiments.

This study established the theoretical basis of the circular-crested Lamb wave fields in multi-layer plates in the healthy state and can facilitate further studies of the wave fields in the damaged state. In fact, the formulae derived in this article can be directly applied to the general Lamb wave field calculation in multi-layer isotropic plates with the consistent bonding condition at the interface, not necessarily to be perfect bonding. For example, the Lamb wave field in a multi-layer plate with the overall imperfect bonding condition, in which the interface tractions are matched, while the interface displacements are not necessarily continuous (i.e. the bond-slip model), can be calculated following the exactly same procedures in this article after the interface traction and displacement condition are updated. Other local damages such as dents and cracks, which introduce scattering wave packets, can be detected and located by the separated scattering waves obtained by subtracting the pristine wave field output from the total output of the SHM system. Further studies will focus on the scattering properties of different types of damages along with the results presented in this study.

It should also be noted that direction independency is considered in the derivations in this study, and therefore the formulae can be directly applied to multi-layer isotropic plates (e.g. metal plates) or quasi-isotropic plates (e.g. fiber-reinforced polymer multi-layer plates with

Figure 15. (a) Aluminum-adhesive-steel plate configuration and (b) zoom-in view of plate thickness.

Figure 16. Out-of-plane velocities.
different lamination angles and woven composite plate) subject to axisymmetric loadings. In a plate made of generally anisotropic layers, or when the excitation is not axisymmetric, the direction dependency should be accounted for. Future studies will focus on the direction dependency in generally anisotropic multi-layer plates subjected to generally external excitations following the procedures presented in this article. The wave fields of general anisotropic plates merit further development in the future.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by The Hong Kong Polytechnic University Research Grant (No. 1-BBAG) and the RGC Theme-Based Research Scheme (Project No. T22-502/18-R). L.L. is grateful to the Research Grants Council of the RGC Theme-Based Research Scheme (Project No. T22-502/18-R). L.L. is grateful to the Research Grants Council of Hong Kong Special Administrative Region for the Hong Kong PhD Fellowship Award.

ORCID iDs
Mohammad Faisal Haider https://orcid.org/0000-0003-4814-1673
Hanfei Mei https://orcid.org/0000-0002-8921-494X
Yong Xia https://orcid.org/0000-0001-5319-5858

References

